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At high densities dipolar fluids with strong dipole moments exhibit an orientationally ordered phase.
Using a density-functional theory for the corresponding Stockmayer model we study the properties of
this ferromagnetic phase both in the absence of and as a function of an external field. In a needle-shaped
volume the magnetization is homogeneous due to the lack of a demagnetization field. For other sample
shapes in zero field inhomogeneous magnetization distributions are formed, leading to a shape-
independent free energy that equals that of the needle-shaped volume. We discuss general properties of
the resulting domain configurations and analyze some simple special cases in more detail. In an external
field a phase transition occurs between homogeneously and inhomogeneously magnetized states, result-
ing in phase diagrams that depend on the shape of the sample.

PACS number(s): 64.70.—p, 75.50.Mm, 61.30.Gd, 75.60.—d

I. INTRODUCTION

Dipolar fluids consist of particles which carry & per-
manent dipole. They can be either molecules with an
electric dipole moment or ferromagnetic colloidal parti-
cles suspended in a solvent forming a ferrofluid. Such
fluids can exhibit long-ranged orientational order which
is either due to spontaneous symmetry breaking or in-
duced by the application of an external electric or mag-
netic field.

The first possibility was found first by Wei and Patey
[1,2] in a Monte Carlo simulation of a dipolar soft sphere
fluid. Meanwhile a ferroelectric phase has also been
detected in dipolar hard spheres [3-5] and Stockmayer
fluids [6]. In our previous work [7,8] we analyzed this
phase in the framework of a density-functional theory
which allowed us to calculate full phase diagrams that
show interesting topological features. This analysis was
restricted to a homogeneous spontaneous polarization
which leads to a shape-dependent free energy. However,
based on general arguments one expects that inhomo-
geneous polarization distributions lower the free energy,
rendering it shape independent [9,10]. In the present pa-
per we discuss this domain formation, which in fluids
differs from the analogous problem in solids in that the
anisotropy energy induced by the crystal structure van-
ishes, so that the domain wall thickness is expected to
scale with the system size [11].

As far as the external field is concerned in the follow-
ing we adopt the magnetic language, assuming that the
particles carry magnetic dipole moments of magnitude m
because the main application we have in mind is
ferrofluids. In these systems it is much easier to observe
appreciable field-dependent effects than in molecular di-
polar fluids. For typical ferrofluids (m ~107!° A m?) the
ratio of the field energy and the thermal energy,
mH /kgT, can be of order 1 for easily attainable field
strengths (u,H ~0.042 T) whereas for water with a dipole
moment 1.82 D one would need an electrical field of
7X10® V/m to achieve the same effect. It should be
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pointed out that, in contrast to ferromagnetism induced
by short-ranged forces, the effect of an external field on
the continuous paramagnetic-ferromagnetic transition in
dipolar systems is gentler, because due to the domain for-
mation it shifts but does not destroy this transition
[12,13].

In a needle-shaped sample the magnetization is homo-
geneous, whereas for other sample shapes the demagneti-
zation field causes an inhomogeneous distribution of the
magnetization. The first case without an external field
has been thoroughly discussed in Ref. [8]. Here, in Sec.
II, we study the influence of an external field on needle-
shaped samples of dipolar fluids. In Sec. IIT we demon-
strate the shape independence of the phase diagram in
zero field for other sample shapes and characterize the
class of possible domain configurations. By calculating
the surface free energy we determine the most favorable
configuration among those with sharp domain boun-
daries. Although in view of Ref. [11] configurations with
sharp domain boundaries will certainly not correspond to
the absolute minimum of the free energy, it is nonetheless
very instructive to sort out which of those with this con-
straint is the most favorable one. Section IV deals with
the influence of an external field for samples with finite
aspect ratios. In Sec. V it is shown that the stripe and
bubble domain structures, which usually occur in dipolar
Ising systems [14], are unstable in dipolar fluids.

II. HOMOGENEOUS MAGNETIZATION
IN AN EXTERNAL FIELD

In this section we extend the density-functional theory
of Ref. [8] to the case of a homogeneously magnetized el-
lipsoid in an external field. First we give a brief outline of
the density-functional theory for the liquid ferromagnetic
phase developed in Ref. [8] in order to be able to discuss
the field dependence. The dipolar fluid is described by
the particle density p(r,®), which depends on the loca-
tion r and the orientation @ of the particles. For fluid
phases the number density p= f dop(r,w) is spatially
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constant and a(r,w)=p(r,w)/p is the orientational prob-
ability distribution at the point r. Within the density-
functional approach developed in Refs. [15,8] the grand
canonical functional divided by the volume V of the sam-
ple is given by

LVQ[p, fa(r,w)},T,u]

1

VQH ’

=st(p)+£S+iVQim—up+ 2.1)

B

2
Qim=12%fyd3r de3r'fdwdm'a(r,w)a(r',w')(a(Ir—r'|

with the Lennard-Jones potential
12 6

o o
wu(r)=4e 7‘ — —r— (2.4)
and the dipolar potential
wdip(rn,a),a)')
2
=’:1—3{fﬁ(a))fﬁ(a)')—3[1’1\1(w)’f12][ﬁl(w')’fu]}, (2.5)
12

where m is the absolute value of the dipole moment
m(e);M(ew)=m(w)/m, r,=r—r', and T;,=r,/r,. If
the volume V has the shape of a rotational ellipsoid with
aspect ratio k and if the magnetization is homogeneous,
a(r,w) depends only on the angle O relative to the long
axis of the ellipsoid and thus can be expanded in Legen-
dre polynomials:

2ra(w)=a(cosf)= i a;P;(cosf) ,
e (2.6)

a,=%fﬁlldx alx) .

The magnetization is M =2mpa;. Using this expansion
a careful analysis of the thermodynamic limit yields [8]
Q. w
—=p>S ua?, 2.7)
4 =0
where the explicit expressions for the coefficients u; are
given in Egs. (3.23) and (3.24) in Ref. [8]. In particular
one has [see Egs. (3.26) and (4.10) in Ref. [8]]

u1=87#[%—D(k)]m2+0(m6) 2.8)

with the demagnetization factor
D(k)=—1/(k*—1)+k/(k?—1)*n(k +V'k?>—1)

for k> 1.
The additional energy in the presence of an external
field H is
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where p is the chemical potential, B=1/(kpT), and fyg
is the free energy density of an appropriate hard sphere
reference system. The term

s=; [d*r [doalronl4na(r,0)] 2.2)
takes into account the loss of entropy if the orientational
distribution is not isotropic, i.e., equal to 1/(47). The in-
teraction contribution due to the long-range part of the
pair potential between the spherical particles with em-
bedded pointlike dipoles is

—B[wdip(r—r’,w,w’)+wLJ(|r—r'|)]

—o)(l—e ) (2.3)

QHZ—med3rdw[)‘(r,co)cosO , (2.9)
where the angle 0 is measured relative to the field direc-
tion. If this direction does not coincide with the direc-
tion of the spontaneous magnetization for H =0, i.e., the
long axis of the ellipsoid, the field will tend to rotate the
direction of the magnetization. We shall discuss an ex-
ample thereof in Sec. IV. Here we restrain ourselves to
the simpler case of an external field parallel to the homo-
geneous spontaneous magnetization which gives
Qp/V=—2pmHa,. The equilibrium configuration for
given values of the temperature and chemical potential is
determined by minimizing the density functional with
respect to the density p and the orientational distribution
ad(x) leading to the coupled equations

afLa;(leréfdx a(xn:[za(x)]
+2p S ujaj—2imHa,—p=0 (2.10)
and =0
exp[ —fp i (21 +1)u;0;P)(x)+BmHx ]
a(x)= =1

>

flldx exp[ —Bp > (2] + 1u;a, P)(x)+BmHx]
- =1

(2.11)

which reduce to Egs. (4.15) and (4.20) in [8] for H =0.
According to Eq. (2.11) @(x) is of the form
a(x)=Cexp[yx +y,Py(x)+---]. (2.12)

Equation (2.11) leads to the following system of equations
for the parameters C and y;:

C—l:flldxexp EylPl(X) »
- =1
2 o0
7/1:_L;'_U-ﬁpulcflldx P/(x)exp | > v.Pi(x) |,
- i=1
1=z2, (2.13)
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and

§ v:Pi(x) |+BmH .

i=1

1
7/1=—%Bpu1Cfﬁldxx exp

(2.14)

As in Ref. [8] only a finite number of terms appears in the
summations if the coefficients u; are expanded in powers
of m? and then truncated at a sufficiently large order.
Therefore the function &(x) and the phase diagrams can
be calculated following the same lines as in the zero field
case.

In the following the variables will be given in reduced
units:

*=kpT/e, p*=pao’, m*=m/Voe, 2.15)

H*=HV'33/e, M*=MV'c/e . '
The magnetization curves obtained from the numerical
solution of Egs. (2.13) and (2.14) for a needle-shaped sam-
ple, i.e., for aspect ratio k = o0, where the demagnetiza-
tion factor is zero, are displayed in Fig. 1 together with
the result of the Langevin theory. The latter ignores the
interactions between the particles and gives, with the
Langevin function L (x)=cothx —1/x,

a,=iL(BmH) , (2.16)

which is independent of the density. The actual solution
reduces to the Langevin theory in the limit p—0. How-
ever, at higher densities the particle interactions lead to
an increase of the magnetization and the zero field sus-
ceptibility. Finally, at densities above the ferromagnetic
critical point p(T) [see Eq. (7.10) in Ref. [8]] the fluid
exhibits a spontaneous magnetization. The phase dia-
grams in the density-temperature plane are presented in
Fig. 2 for various fixed values of the magnetic field and

12 1 m'=15,T*=2.2, k=eo
1
0.8
g 0.6
0.4
0.2 g::gf)s
0 —= Langevin theory
2 25 3 35 4 45 5
H*
FIG. 1. Typical magnetization curves (M=%pma1) in a

needle-shaped sample (k =o0) for different values of the re-
duced density p*. The Langevin theory [see Eq. (2.16)], which
ignores the particle interactions, is a good approximation only
at low densities. For p > p.(T) M (H —0) is nonzero which cor-
responds to a spontaneous magnetization. For p <p(T) one
has M (H —0)=0 and there is no spontaneous magnetization.
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for the reduced dipole moment m*=1.5. As the field in-
creases the critical point of the liquid-gas transition is
shifted to higher densities and higher temperatures be-
cause the nonzero orientational order of the particles in-
duced by the field even at high temperatures and low den-
sities leads to a stronger effective interaction. Since for
k = o« there is only a single domain the second order
phase transition between the ferromagnetic and the iso-
tropic liquid phase at H =0 is smeared out by the exter-
nal field, but it leaves fingerprints at nonzero field, e.g.,
for weak fields the susceptibility exhibits a pronounced
maximum near the loci of the second order transitions at
H =0 (see Fig. 3). The tricritical point turns into a criti-
cal point whose corresponding critical density decreases
with increasing strength of the field. As function of H its
corresponding critical temperature first decreases and
then increases again (see Fig. 4). For strong fields the
critical points of the liquid-gas transition and of the
isotropic-ferromagnetic transition merge so that only a
single critical point is left. A similar series of phase dia-
grams was found by Zhang and Widom [10] based on a
phenomenological model, whereas our results follow
from a microscopic approach. Figure 5 represents the
field dependence of the critical temperature and density
corresponding to the liquid-gas transition. In accordance
with Ref. [16] we find that the critical quantities increase

2.1 ’
m*=1.5, k=co — H—o
--- H*=0.05
2 —— H=02
e —— H*=05
ferromagnetic
- 191 s \ liquid
1.8
17 ! |
’ b\
0 0.2 0.4 0.6 0.8

FIG. 2. Evolution of the phase diagram with the external
field for a dipolar fluid in a needle-shaped container for
m*=1.5. At low temperatures there is a first order transition
between a gas and a ferromagnetic liquid. For small H there is
a triple temperature above which one has a first order transition
between a gas and a liquid as well as a first order transition be-
tween a liquid and a ferromagnetic liquid, which both end in a
critical point denoted by the full dots. For H =0 the latter
transition ends in a tricritical point (open circle) above which
this transition persists as a continuous transition along a line of
critical points (dotted line) which is eliminated for H+#0. The
tricritical point turns into a critical point for H#0. For strong
fields the critical points merge and one has only one first order
transition between an isotropic gas and a ferromagnetic liquid
with a single critical point. The liquid phase and the ferromag-
netic liquid phase differ in that for H =0 the former phase is
isotropic whereas the latter phase is ferromagnetically ordered.
For HF0 all phases exhibit a nonzero magnetization.
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FIG. 3. The susceptibility Y=0M /3H as a function of the
temperature for a needle-shaped sample in finite fields. The pro-
nounced maxima for small fields near the critical temperature
TX(p*=0.6,H =0)=2.017 are fingerprints of the divergence of
the susceptibility at the transition point in zero field. For tem-
peratures T*>>2.5 all curves approach the susceptibility
X=1Bpm?+O(H?) that can be derived from the Langevin
theory [see Eq. (2.16)].

quadratically with H at low fields. The corresponding
amplitude increases strongly with the dipole moment due
to the influence of the second critical point stemming
from the isotropic-ferromagnetic transition. Boda,
Szalai, and Liszi [16] do not find the ferromagnetic phase
or the second critical point but the flattening of the coex-
istence curve at high densities which they observe may be
caused by the influence of that phase. Insofar as they do
not specify the shape of the sample their theory seems to
be incomplete.

In the following we present a detailed comparison with

k=oo (@)
s 002 — m=15
= : - mt=1.2
= -0.04
T
¥ 006
i ;
-0.08
0 0.2 0.4 0.6
0
§ -0.02
5
& -0.04
T
5 -0.06
a
-0.08
-0.1
0 0.1 0.2 0.3
H*
FIG. 4. Shift of the temperature and density of the

liquid —ferromagnetic-liquid critical point as a function of the
applied field. For small fields we find that the shift of the tem-
perature is proportional to H'!/? and the shift of the density is
linear in H.
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FIG. 5. Shift of the critical temperature and of the critical
density of the liquid-gas critical point as a function of the ap-
plied field for two different values of the dipole moment. For
small H both shifts increase quadratically as a function of H.

the results of the Monte Carlo simulations of Stockmayer
fluids in external fields by Stevens and Grest [6]. Note
that the infinitely permeable surrounding they used com-
pletely suppresses the demagnetization field and thus is
equivalent to the limit of a needle-shaped sample (see Sec.
IIT in Ref. [8]). The main difference from our results is
that in the simulations the transition to the ferromagnetic
phase is found only at very high densities and dipole mo-
ments, e.g., for m*=2.5 and T*=1.5 they estimate
pf=0.9. (They are not able to determine the order of the
phase transition.) If this can be corroborated it indicates
that for large dipole moments our approach overesti-
mates the stability of the orientationally ordered phase.
On the other hand, in contrast to the simulations, which
allow one to explore only a small portion of the parame-
ter space, we are able to determine full phase diagrams,
which exhibit interesting topological features. Stevens
and Grest observe that their data for the relative increase
of the critical temperature T,(H)/T,(0) plotted as func-
tion of the quantity m*H* /[ T.(H)/T.(0)] approximate-
ly lie on a straight line which is independent of m *. Fig-
ure 6 shows that our data rather lie on an S-shaped
curve, which seems to be also consistent with the simula-
tion data, and that the results for different m* do not
scale. As a consequence of the overestimation of the sta-
bility of the ferromagnetic phase for dipole moments as
high as m*=2.5 we do not find a critical point in zero
field for this value of m* [see Fig. 15(a) in Ref. [8]]. The
critical point at H50 which evolves from the tricritical
point does not have much in common with the liquid-
gas-like critical point found in the simulations, e.g., at

*=0.5 we find py=0.5012 and T} =4.562 while from
Ref. [6] p¥=0.285 and T*=2.71. Therefore in Figs. 6
and 7 we refrain from a comparison of the results for
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1.3 ¢ Monte-Carlo simulations, m*=1.0
A Monte-Carlo simulations, m*=2.5
1.25 — density-functional theory, m*=1.0 .-

- density-functional theory, m*=1.2__..=~"

T 5(H)/ T .*(0)
o

1.05

m*H(T,*(H) T.*(0))

FIG. 6. The critical temperature of the liquid-gas critical
point as a function of the external field using the scaled vari-
ables introduced by Stevens and Grest [6]. The symbols are the
results of their Monte Carlo simulation whereas the lines are
obtained from the present theory. While Stevens and Grest
infer from their data a linear relationship, we find a quadratic
behavior at low fields (see Fig. 5) and a saturation at high fields.
Furthermore, we do not observe scaling. Within the framework
of the present density-functional theory for m*=2.5 the
influence of the ferromagnetic phase on the phase diagram is al-
ready so strong that it wipes out the liquid-gas critical point so
that there is no 7,.(0) anymore.

m*=2.5. The phase diagrams for small dipole moments
compare favorably with those obtained by the simula-
tions; the overestimation of the liquid densities at low
temperatures can be traced back to the low-density ap-
proximation of the correlation function used in our ap-
proach [15]. Compared with the simulation data the
density-functional theory provides better access to the
critical points albeit in terms of classical critical ex-
ponents. However, at least at present the expected non-
classical behavior of these systems seems to be out of
reach for the simulations. In Fig. 7 we compare the re-
sults for the reduced magnetization M /(pm)=2a, at the
critical point as a function of the external field. For
m*=1.0 the agreement is quite satisfactory, whereas, as
noted above, a comparison at m*=2.5 does not make
sense.

0'8 4
0.6
£
Qo
< 04
°
=
Monte-Carlo simulations, m*=1.0
0.2 A Monte-Carlo simulations, m*=2.5
— density-functional theory, m*=1.0
o - density-functional theory, m*=1.2
0 1 2 3 4 5
H*
FIG. 7. Reduced magnetization M/(pm)=2a, at the

liquid-gas critical point versus the external field, as obtained by
Monte Carlo simulations [6] (symbols) compared with the re-
sults of the present density-functional theory (lines).
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III. DOMAIN STRUCTURE IN ZERO FIELD

A. General aspects

As already pointed out in Ref. [8] for finite aspect ra-
tios of the sample the formation of domains lowers its
free energy as compared to the homogeneously magnet-
ized state. For dipoles on a lattice Griffiths [9] has prov-
en that this leads to a shape-independent free energy in
the thermodynamic limit as long as no external field is
applied. We want to show that, in the framework of our
approach, this statement can be extended to dipolar
fluids. To this end we identity the class of domain
configurations which minimize the bulk contribution to
the grand canonical functional and show that they have
the same free energy as the homogeneously magnetized
long needle (k— ). Consequently the phase diagrams
obtained for this case (see Fig. 15 in Ref. [8]), for which
the homogeneous state is the one with the lowest free en-
ergy, are valid for any sample shape.

The actual orientational distribution can be expanded
in a reference frame fixed in space:

) !
(Z(r,w)ZE 2 H[m(f)Y[m(a)) ’
=0 m=—1

where puyp=1/V4r due to the normalization
fdwa(r,a))=1 and puj, =(—1)"u,. since a is real
(Here and in the following # = —m.) In order to study
the domain formation, here we consider only such
configurations which scale with the system size. This
means that for large system sizes L the coefficients u,,
depend on the three lengths r, o, and L only via r/L:

(3.1)

i (t,0,L)=p$O(r /L), L/o— o . (3.2)

This scaling certainly does not hold near the surface of
the sample, but these deviations are expected to occur
only in a surface layer whose thickness is not proportion-
al to L so that they can be neglected for the bulk contri-
bution to Q.

In the following we derive a simple expression for the
interaction contribution Q,,, [Eq. (2.3)] for configurations
satisfying Eq. (3.2). Using Eq. (3.1) and the expansion of
the Mayer function in terms of rotational invariants,

q’zllzl(a’:w'ywlz)
= 2 CLLmmym)Y, , (o)

my,m,,m

XY, m, (@)Y} (@) , (3.3)

with the Clebsch-Gordan coefficients C (/,/,],m m,m) in
the notation of Rose [17] and Gray and Gubbins [18] (see
Ref. [8]),

wB[wdip(rn,w,w’)+wu(r12)]__ 1)

O(ry,—o)le

= 3 Fir)®; e,0,0),  (3.4)
1500

[note that for f,l 1,1 to be nonzero both I, +/, and / must

be even (see Appendix B in Ref. [15])] Eq. (2.3) can be
written as
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2
Q=—2'3 3 culLLmm,m) f d rf Ay (O (

2/3 11 Lyl mi,mym

—— s S CcUllmmym) L rumm [, drop,,,

ZB 11'12’1 my,my,m
with the shifted volume

V.(r)={xER}|x=r—y,yEV]} .

B. GROH AND S. DIETRICH 53

) f1,1,1(r12) Y (@12)

_rlz)flllzl(”lz)ylm(wlz) (3.5)

Here and in the following the summations over [, /,, [, m, m,, and m are to be taken as [8]

! 1,

s 03

22052

1,0l my,my,m I1 0 l2 01=0 m, —l1 m2:—l2 m=—

(3.6)

First we consider all “short-ranged” (SR) contributions to the coefficients f,llzl(ru) that vanish ~7,® or faster for

large distances T,
fz(ssz(r)—E,,_g c, 2", =1 which yields
Q= 2 S C(ll,mym,m) S LS "¢

int
2B 100 my,my,m n=6

X fdwlzylm(wu)fg/(

12)

Here V=L 3V is the scaled volume and the function
g (w,) defines the surface of the scaled region of integra-
tion L ~3¥,. When the expansion

(x)+ - - (3.8)

0 0)

110 (X X1p) =i () =X Vi)
is introduced the evaluation of the radial integration
shows that the gradient and higher-order terms do not

contribute to the bulk term so that /.L(I(;l,,z(x—x]z) can be
replaced by ,u(m (x). Then the angular integration over

;, yields l—O, m =0, and therefore I, =1,, m;=—m,
so that the bulk term is given by

ﬂgstR) Y (i
lim —=—= C(10,mm0) 3 c\'(—o 37"
L-—>» L3 2 n§6

><f dx pi)(x)p(x) . (3.9)

By using

C(10,mm0)=(—1)*"/V2I+1

in the thermodynamic limit the short-range contributions
sum up to

Qg})—wpzz(zl+1)ﬁ,2de3r|y,m(r)|2 (3.10)
1=0 m
with the coefficients %, given by
o,=— 1(—f dr r2fue(r) . (3.11)

B V(2] +1)37?

One should note that %, =u; for /51 [see Eq. (2.7)] and
#,=u;+(87/9)[1—D(k)]m? [see Eq. (3.24) in Ref.

(811.

(11121

dxllez #1 m (x—xy,) .

We introduce the scaled variables x=r/L and x,,=r,,/L and use the expansion

S, @ il (%)

The only “long-ranged” (LR) contribution, stemmmg
from the dlpolar potential and decaying only ~r %, ap-

pearsin f,:

1If§)(r)_ 417)3/2\/ X Bm (3.12)

[The next-to-leading-order terms in f,,(r— o) decay
~r~? and thus can be treated as the other short-ranged
terms. However, since for them /540 they do not contrib-
ute to Eq. (3.10).] The corresponding contribution to
Qint’

QIR = —1p2m2(47) /2 S C(112,mm,m)

my,my,m
X [ d [ d*riyy, (p, ()
Xr? Yo, (@) , (3.13)

must be treated differently. By inserting the spherical
harmonics and carrying out the summation it can be
shown that Q{LR’ can be cast into the form

QLR —zzf d’r de3r’M,~(r)Tij(r12)Mj(r’) (3.14)
with the local magnetization
172 -2 Repyy(r)
M(r)= %’T pm | V2 Tmpy(r) (3.15)
10(T)

and the dipole tensor
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In the next step we establish the connection between this
mean field, describing the influence of the magnetized
fluid on a particle at point r, and the demagnetization

(3.16) field H,; which is used in macroscopic and mesoscopic
treatments of ferromagnetic materials and is defined by
Equation (3.14) can be rewritten as
Q= %de3r M(r)-h(r) (3.17) V-H,=—47V-M, VXH,=0. (3.19)
with
(Fis), From these equations one infers that H, is the gradient
hi(r)=— f d*r'®(r,—o)M(r')-V,, ‘% ] . (3.18) of a scalar potential satisfying Poisson’s equation so that
v 12 standard reasoning shows that (r;,=r—r’)
J
3. ' ’ ("12)]' 2.1 ’ (r12)j
[Hy0);== [ & [V-Me—L+ ¢ dnM(r)—F
T2 v i
(ri); (r15);
—— 3 ’ ’ ’ 127 3. ., ' 127
Jyos, @1V M) -y Js, @1V M =
+[ v M) 2|4 4 M) (ria); 3.20
VAS, (1) r n T, (3.20)
In the last step Gauss’s law has been applied for the  which can be rewritten as
volume ¥\ S,(r) in which the integrand is regular. n’is
the normal vector on the surface of V, i.e., aV, or of Qi,l;tR)~ f d*r H> (r)——f d3r M%(r) . (3.25)

S (r)={xER3||x—r| <0}, ie., 3S,(r), pointing out-
wards. The contributions from points r in a surface layer
of thickness o for which the above separation of V into
V\S,(r) and S,(r) is not possible can be neglected in
the thermodynamic limit. Using the product rule we find
that the first and third terms together just give A;(r). For
the other two terms we again use the expansion [see Egs.
(3.2) and (3.8)]

M, (r')

=Mj(r——r12)

=M(r/L)——>-VM{*(r/L)+ (3.21)
and find that the second term in Eq. (3.20) is of order

o /L while the last term gives

—M(r)-§ (3.22)

2 [ AT Ay
asa(O)d REI M;(x) .
Thus we have shown that the demagnetization field and
the mean field just differ by the field produced inside a
homogeneously magnetized sphere (of radius o) with
magnetization M(r):

41

Hd(r)_h(r)_TM( ). (3.23)
From Eq. (3.17) one obtains
(R)— _ 1 3 _ 2 3 g2
Q== [ d’r M) Hy() =5 [ d’ M) ,
(3.24)

[Equation (3.19) implies M= —1/(47)H,; +V X A with
VXVX A=VXM; V-(H;XA)=—H;-(VXA) and
Gauss’s law lead to Eq. (3.25), because H; decays as r3
for r—».] We remark that if the magnetization is
homogeneous throughout the sample one has [19]
—f d’r Hi(r)=27V3 D;M;M, (3.26)
ij
with the generalized demagnetization factors D,;. If the
magnetization points along the z direction, the long-
ranged interaction contribution is Q{LR'/V =27(D;;,
—M 2, This is in accordance with our previous result
in Ref. [8], because here M =2pma; and D;; =D (k).
In summary we have found that for H =0 the bulk
part of the grand canonical functional can be written as

1
(b) — 3 4 —
Qe —de rfn+4- de3r H2(r)—upV  (3.27)
with the free energy density
f(r)=fHS(p)+‘%fdwa(r,a))ln[47ra(r,w)]
+wp22(21+1)a,|u,m(r)|2——2§’1M2(r). (3.28)
Lm

Note that f(r) is invariant under local rotations of the
orientational distribution a(r,w) because under such
transformations the coefficients u,;,, transform according
to
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(i (£)=3 DL [Q(r) sy, (r) (3.29)

where D!, [Q(r)] is a rotation matrix (see Sec. VI in Ref.
8) and 3, 1tim(0*=3,, I}, (r)|?* is invariant. For
I =1 this means that the absolute value of the local mag-
netization, |[M(r)|, does not change [see Eq. (3.15)]. The
first term in Eq. (3.27) leads to the same minimum condi-
tion for the coefficients u,,, (r) at each point r. Since for
H =0 locally there is no preferred direction the equilibri-
um configuration is axially symmetric, i.e., in a suitably
chosen reference frame

a(r,m)=&(cos9)=LZaIPl(COSB) . (3.30)
27 =,

When this ansatz is inserted into Eq. (3.28) one ends up
with exactly the same minimization problem as for the
needle-shaped sample for which

fO=Fusp)+ £ [ aomi2a0)

87

+p?SHal— > p’mial . (3.31)
!

The preferential direction with respect to which the angle
0 is measured may vary spatially in an arbitrary way.
Obviously the second term in Eq. (3.27) takes on its
minimum value zero for all configurations with vanishing
demagnetization field. According to Eq. (3.20) this is the
case if V-M =0 everywhere in the sample and n-M=0 on
the surface. Thus we can conclude that the minimum of
the total grand canonical functional is attained by those
configurations that minimize both terms simultaneously,
i.e., for those that are generated from the homogeneous
configuration in a needle-shaped sample at the same
values of the parameters p and T by spatially varying ro-
tations in such a way that the conditions V-M =0 and
n-M=0 at the surface are fulfilled. All these
configurations have the same bulk contribution to the
density functional, namely, that of the homogeneously
magnetized long needle. This corroborates the validity of
Griffiths’s theorem within our approach also for dipolar
fluids.

For such configurations VX M0, i.e., there are closed
magnetization lines; otherwise M would be the gradient
of a potential ® that satisfies Laplace’s equation inside V'
with Neumann boundary conditions 3, ®=0 on the sur-
face. But this problem has only the trivial solution
M=0. A further corollary is that the average magnetiza-
tion (M) =V¥"" [ d’r M(r) vanishes because one has

Jd’rMin)&,= [ d* M(r)-vr,
= [a@% V-[r;M(r)]= $d’n-M(r)r,=0 .
(3.32)

B. Hexagonal, triangular, and trapezoidal domains in a cube

The most stable configurations within the above class
can only be determined by comparing the corresponding
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surface contributions to the grand canonical potential.
This is a very demanding task which, however, simplifies
considerably if sharp domain boundaries are assumed
with the magnetization being constant within each
domain. In order to avoid sources of the demagnetiza-
tion field, which according to Eq. (3.25) would increase
the energy, the normal component of M has to be con-
tinuous at each domain boundary. As an example for a
configuration which fulfills all the above conditions inside
a cubic sample we examine the layered structure that is
depicted in Fig. 8 and which is translationally invariant
in the z direction. The small triangular domains prevent
the existence of a magnetic surface charge density
M-n7#0 at the sample surfaces. By explicitly calculating
the surface contribution to the free energy

lim £ (3.33)

Q—L3
L—>o L3

2= lim %

Lo

one can determine the most favorable number of layers #n.
Thus in general the grand canonical potential can be
written as Q=L30®+L2Z+----. Note that there are
finite size corrections to the coefficients of the equilibrium
orientational distribution:

o (6, L)=pi2(r)+ L~ ui(e)+ - - - (3.34)

so that the grand canonical potential becomes

FIG. 8. The layered domain structure examined in Sec. III.
Here the case n =4 is drawn; in general, the structure has n
domains of type A4, 2n +2 domains of type B, and two domains
of type C. The whole configuration is translational invariant in
the z direction. Note that in order to ensure that the normal
components of M are continuous at the domain boundaries the
B domains must form angles of 7/2 and 7 /4. The arrows indi-
cate only the mean value of the orientation. However, in our
calculation we consider a nontrivial orientational distribution
a(r,w). Therefore we incorporate, within mean-field theory,
fluctuations around the mean value M.
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Q{ (1, L)})=L30®({ui2)(r)})

+L2fd3r2,u.(”(r)—L
m (T) [ (u{0)
+L2Z({p(e)})+ - - - (3.35)
But since by definition [Sw(b)/S,ulm(r)H‘ =0 the

{Him ()
terms p$1)(r) do not contribute to the surface free energy
and will therefore be ignored in the following. There is
no surface contribution to the entropic term given by Eq.
(2.2), so that in Eq. (3.33) {2 can be replaced by Q;,,. Ac-
cording to Eq. (3.5) the interaction contribution to the
grand canonical potential can be expressed as

0,=-£3 3 3

Lj 10,0 my,my,m

C(l,l,l,m m,m)

) I1yIm

lml.u'l'lm2 ij (3.36)

with
1,1ylm
L} f d’r f dsrfl 1 712) Yy (@1)

IlIm

=(— 1)11 (3.37)

Here i and j denote the domains and the coefficients !,
parametrize the orientational dlstrlbutlon within the
domain i according to Eq. (3.1). Since I;; 11127 G anishes if /
is odd [see Eq. (3.4)] the indices i and j can always be in-
terchanged. Using the transformation rg=2Xi(r+r’),
r,=r—r’, one obtains

Ifljllzlm 3f d riphy | = fl L1(r2) Y, (@), (3.38)

where

V {I‘leR |r12—r‘—r',rE Vi,r'E I/j} (3.39)

ij
is the set of vector differences between points in domains
i and j. One has V;;=—V;= (rER’|—r€V,;}. The
function h;;(r,,/L) gives the volume of the set of possible
vectors rg for fixed r,, divided by the total volume L3. It
can be determined from the volume of the intersection of
the sets V; and V; if they are displaced by the vector 1,

relative to each other (see Fig. 9):

hi(r,/L)=L “vol({rER3}|r'=1r—1,5,TEV;} N V)
=h]1( _rlz/L) . (3.40)

functions have the expansion

The . f’ﬂz !

flllzl(r)=2,‘;"=3c,(c 1hh, —k [which is valid for r >0 (see
Appendix B in Ref. [15])], where the long-ranged term
with k =3 occurs only for (/,7,/)=(112), whereas in all
other cases the summation starts at k=k,>6. If the
domains i and j are disjunct their minimal distance scales
with the system size L [for an example see Fig. 9(c)] so
that after the substitution x=r,,/L Eq. (3.38) gives

2517

Illm (1,0

fd§ D6~k

( )

% f:jw) dx x4, (X) Y (@) . (3.41)
The definitions of g,(w) and g,(w) can be inferred from
Fig. 9(c). The above expression does not contain any sur-
face contributions ~L? (there is a bulk contribution
~L?3 from the long-ranged part of f,;,: c$'?%0 but
ci'P=0 for k =4,...,8). If ¥, and V; are identical or
have a common edge or surface the function h;; can be
expanded around r;, =0:

|22 =3 |22 | Py (3.42)
i | “n§0 L ij \@12) . .
With g (0)=r_ (@) /L where r,, () defines the surface

of V;; (see Fig. 9) one has

hp(r), /L)

FIG. 9. (a) Construction of the integration volume for the in-
tegrals over ry, in Eq. (3.38) using a B and C domain as an exam-
ple. The dot denotes the origin. The function r,,.(w) defines
the surface of the volume Vp. Its height in the z direction is
2L. (b) The function L3hgc(r,,/L) equals the shaded intersec-
tion volume of the C domain and the B domain which are
translated by the vector rj, € Vp relative to each other [see Eq.
(3.40)]. (c) The same construction as in (a) for two domains
which have no common points. In this case the origin (dot) lies
outside the integration volume Vp.. The functions Lg,(w) and
Lg,(w) define the lower and upper limits of the radial integral in
the direction w, respectively.
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lilalm fdw (@)Y (@

>17[\/]8

1,0 _ r
rrzck”r k| L
L
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B. GROH AND S. DIETRICH

53

In accordance with Fig. 9 the angular integral over o in

Eq. (3.43) does not run over the whole unit sphere as long

as the uniquely defined origin rj,=r—r'=0 does not lie

within the interior of V;, i.e., for i7j. This is taken into
. )y . .

account by putting A ,»(j" =0 outside these accessible values

of w. The radial integral can be evaluated easily. Only

(3.43) the terms ~L?2, i.e., n =1, contribute to = so that
|
u+1 |
(i) ~t T 1 I
2312;, 21‘;’1 ml%v C 1,1, m1"12"1).Lhr’,m]#zzm2 Wl |~ 4m ] i
:Zzw , (3.44)
A

where ¥/ denotes the sum over neighboring domains i
and jincluding i =j, A=(l,1,1),

(1D 4y

2
2k4 .

and [see Eqgs. (3.38) and (3.42)]
172

Jdoh{ (@)Y, (@)=(=1)Ji".
(3.46)
[In Eq. (3.45) the term k =4 does not pose a problem be-
cz(llulse” according to the above discussion all coefficients
cs'? vanish.] For (I,1,1)#(112), f, 11 -6
or faster so that

tlll f drr3f1112,(r)

but in the special case of the long-ranged coefficient fm
one finds [see Eq. (3.12)]

= (3.45)

47
21 +1

Im —
Jirn=

r) decays as r

(3.47)

Note that 7 ; ; is zero unless both /; +1, and / are even

[see Eq. (3.4)].

In the domain structure under consideration (see Fig.
8) there are n hexagonal domains, which we will call type
A, 2n +2 triangular domains (type B), and two tra-
pezoidal domains (type C). Since h (w) is zero if the
domains i and j have only a common edge (like two
neighboring triangular domains), only combinations of a
domain with itself or with a domain with a common face
have to be taken into account. Since / is even the integral
I; hhm g Eq. (3.37) is invariant under simultaneous
translatlons of both domains or inversions at any point.
Reflection of both domains at the xz plane leads to
the complex conjugated integral since Y, (6, —¢)
=Y} (0,¢4). Due to these symmetries the actual calcula-
tion is reduced to seven cases: the combination of a
domain with itself for all three types (J§",,Jh2,Jb),
domains A4 or C with a domain B attached at the upper
left boundary (J7%,7), two adjoining domains A with

tuz:_(4ﬂ)3/2\/_li_5/3mza+ f “dr r3f(15112{)(r) , (3.48) A’ to the left of A4 (J',.), and a domain A in contact
4 with a domain C to its left (J/%). For these cases the
where - functions h,-(j” are obtained by determining the overlap
f(lsllz‘) = fl = 2 (112),, volume of the translated domains [see Eq. (3.40) and Fig.
=9 9]. For example, one finds
_
N —]cos¢|sin6-}cosel——z(ll_:_zg)z, —%Sd)ﬁ% or %Ed)ﬁ%r
hy4(0,0)= . (3.49)
_ nleosgl Tlsingl g |oosp) LT T g 3T Toy> 3T
l+n 2(1+n)*° 4 4 4 4
I
and We are now in the position to compute the surface contri-
bution to the free energy 2=3 , >A) which, in principle,
is an infinite sum. However, we constrain our analysis to
n i T <p< ™ . SN . s
n+1 cos¢sind, — D= $= ) the most important contributions. This approach is
hU).(0,6)=h'2(0,6)= . reasonable because X is already overestimated by assum-
4 4 0 otherwise . ing sharp domain boundaries; therefore it is appropriate
(3.50) to refrain from computing this approximate expression
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for = [Eq. (3.44)] with high precision. This additional ap-
proximation is justified as long as it does not prohibit one
from predicting correctly which of the considered
configurations is, within the same approximation scheme,
the most favorable one. Guided by the experience [8]
that in a needle-shaped volume the equilibrium orienta-
tional distribution is dominated, at least close to the
phase transition to the isotropic liquid, by the terms / =0
and 1 in Eq. (3.1), we assume /,,/, €{0,1}. Since /;+/,
must be even and due to the selection rule for the
Clebsch-Gordan coefficients (see Appendix B in Ref. [15])
this implies that we have to consider three terms in =:

3=30004 31104 5012) 4 (3.51)

3(000) j5 the surface contribution which arises from the

isotropic configuration u;, =(1/ \/ET)SI,O. Since the
value of ug, is fixed by the normalization, >(000) s the
same for all configurations, independent of the domain
structure. For an isotropic fluid in a cube as considered
here one has 3'%=60",. where o3, is the surface
tension between the isotropic fluid and vacuum. If the
fluid is magnetized, %2(000’ corresponds to the
magnetization-independent contribution to the anisotrop-
ic fluid-vacuum interface tension [see Eq. (3.72)]. Within
the approach explained above the domains shown in Fig.
8 are specified by the coefficients u{?) . Since the magneti-
zation lies in the xy plane everywhere one has u(li())=0 [see
Eq. (3.15)]. For the domains of type A and C one has
p==x A4i and p;; == 4 for the domains of type B where
A =vV(3/87)(|M|/mp). According to Fig. 8 the signs
alternate from domain to domain. This implies that we
have to determine the quantities J, for (I,m)=(0,0),
(2,0), and (2,2); (2,1) does not occur because m =m, +m,
and m,m, —+1 Furthermore, we have Jl'"=J1'” since /

is even and J/"=(J/™)*. Using MATHEMATICA we find

1+2\/2+4n +2V2n +2n?

J = ’
A4 (1+n)2 (3 52)
J20 :_Trl—\/i—l—n—\/?.n —n? ‘
A4 4(1+n)? ’
|
5 1/2 2
S(112) = _ = %1“2,42 —n ReJ%, —2ReJE+2
—8n ImJ%, —8 ImJ &, +‘/16{—n1,24 —2J&
1 5 1/2 2
== T’T %t112A2(2n+3+2\/§).

It is a very useful and nontrivial check to see that
1300 =gl . coincides with the corresponding expres-
sion given before Eq. (4.33) in Ref. [15]. Although the

above derivation cannot be applied to the special case

2519

72, = Vén 700 34+2V2+2n +2V2n
8(1+n)’ “BE 2(1+n)? ’
(3.53)
V2+4+n+V2n v6
=g T— 3.54
ST e B T T e (3.54)
34+2V2+48n +2V2n +4n?
Jee=— 2 ’
2(1+n) (3.55)
s V2+n+VvV2n+2n? )
JCC_Tr 2 ’
8(1+n)
V'6(1+2n)
R=—g— 3.56
Jec 16(1+n) ° (3.56)
0 —, 0 0o n_ogn o Ven
Jac=m1 00 Jac= T ms 0y T T T e
(3.57)
V2 %)
Iy =ro e =
16(1+
2(1+n)_ (1+n) (3.58)
J22_ V3
16(1+n)
and Jim, =Jim. Jlm=gm  This finally leads to the fol-

lowing terms in the surface contribution to the free ener-
gy [see Eq. (3.44)]:

s 3 p°

L (3.59)
8vm B
1 2
2(110):_4V§;BE,110A2[—”J30A—2J8%— n+1)J%
+2(n — 1P +4I%% ]
172 5
- % BB—t”oAZ(Zn +3+2v2), (3.60)
and
(n +1)ReJ2% +2(n —1)ReJ 2, +4 ReJ %
—2(n + 1) +2(n — 1), +4T %}
(3.61)

n =0, which corresponds to the triangular structure with
four domains as shown in Fig. 10, an analogous analysis
for this configuration shows that the final results in Egs.
(3.59)—(3.61) remain nonetheless valid for n =0. With
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FIG. 10. The triangular domain structure in a cube exhibits
the lowest surface energy of all considered configurations with
sharp domain boundaries. The last part of the caption of Fig. 9
applies here, too.

the expressions for the functions f,o(#) and f,,,(r) given
by Egs. (B33) and (B34) in Ref. [15] we find

172
tnoz_i—g 4777 33m6f0°°drr—6e*13wu(r)
+0(m') (3.62)
and
ta = (472 Fpm? [_U+ fgwdr(e “hen _y,
+0(m?®) . (3.63)
Therefore for small m =—3% is dominated by (112,

Since t,,, is negative for T*>0.717, Eq. (3.61) implies
that = is minimal for n =0. We do not consider the case
T* <0.717 because at such low temperatures one en-
counters freezing which is not captured by the present
approach. Thus we conclude that the configuration in
Fig. 10 is the most favorable one among those considered.
Although in the actual equilibrium configuration the
sharp domain boundaries will be replaced by a smooth
variation of the magnetization, the above result indicates
that ‘““large-scale” structures with only very few rotations
of M upon traversing the sample are favored.

C. Surface tension between domains

In the following we show that the results in Egs. (3.60)
and (3.61) can also be obtained by adding the surface ten-
sions of the individual domain boundaries. This demon-
strates that in the thermodynamic limit the various
domain walls do not exhibit an effective interaction be-
tween them, which would preclude this linear superposi-
tion. In order to be able to extract one single surface ten-
sion from the total surface contribution to the free energy
first a homogeneously magnetized cuboid with side
lengths /;L (i =x,y,z) is examined. In analogy to the
above calculation we find

Ehom=—§gz S CU, Ll mymym)
11:1271 my,my,m
Xiu'llml:u'lzmztlllzl
u+1 ]
= Jm (3.64)
41
with
4 172
Im— [ _3T _ 8
20 +1 fd“’h (@)Y, (o) . (3.65)

In this case the function A defined by Eq. (3.40) with
Vi=V;=Vis

h(x,y,2)= (1, — |x)(L, = [y)(I, —|z]) (3.66)
so that
hY0,4)= —I,1,|cosp|sind—1,1,|sing|sinf
—1.1,|cos6| , (3.67)
which gives
J®=—2m(I I+ 11 +1,1,),
J?-°=%(1ylz+1xzz—21xly) , (3.68)

Jﬂz%\/';(—lyzzﬂxl,) )

If the magnetization lies in the xy plane and is given by
1= — Ae ~'¢ the evaluation of Eq. (3.64) yields

swo— L P ) (3.69)
om 8\/77' B 000\¢y‘z x‘z xty /o
172 2
w
e =—|3 %tnoAz(lylz+lxlz+lxly), (3.70)
and
1 5 172 2
v
2§11011121)=_§ 6 %’tllez
X[3cos2¢( —1,1,+1.1,)
—(L L +1,1,—211)] . (3.71)

Due to the explicit dependences on the side lengths the
different terms can now be assigned to the individual
faces of the cuboid. Thus the surface tension o ,,.(¢)
between vacuum and a half space magnetized in a direc-
tion forming an angle ¢ with the surface normal is

(1,1,

af,vac(¢)= 2 Uf,vac (372)
151,51
with
1 2
000 = ——= Lt (3.73)
O'f,vac 16\/7T B 000 »
1 172 2
v
U(r,l\}:?c):——z_ [‘3"} %tnoA2 ) (3.74)
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172 2
—561‘ %t112A2[3cos2¢+1]. (3.75)

By using Eq. (3.63) one sees that the surface tension with
the vacuum is maximal (minimal) if the magnetization is
tangential (orthogonal) to the interface.

Now we consider two adjacent cubes of side length L
which touch each other in the xz plane. The magnetiza-
tion in both cubes is taken to lie in the xy plane, having
the same angle a with the interface normal, i.e., the y
axis. (Thus the normal component of M is continuous at
the interface in order to avoid magnetic surface charges
and the parallel components point in opposite directions.)
With the same method as described above the surface
contribution to the free energy is found to be

2(000)= -——5-;—-£i

1000 » 3.76
g B % ( )
2
0= _ % pEtlloAz(—COSZa+6), 3.77
12
2y _ 1|57 2 2
2 e B ti;; A“(cos2a+3) . (3.78)

By subtracting the appropriate vacuum surface tensions
at the outer surfaces one obtains for the surface tension
between the two domains

(11,

opr= 2 Ofy (3.79)
11’12’
with
¥ =0, (3.80)
1/2 2
U(fflfmz‘_ % Eﬁ_tnoAz[l_Cosza] , (3.81)
1 5 1/2 2
onf==7 7”] i 4’1—cos2a] . (3.8

This surface tension vanishes if the two domains are mag-
netized in the same direction (i.e., «=0) and is maximal
when they are magnetized in opposite directions (i.e.,
a=m/2). Adding the contributions from the individual
interfaces of the assumed domain structure (Fig. 8) and
taking into account the angles between the magnetization
vectors as well as the interface areas leads to the same re-
sult for the total surface contribution to the free energy
as the direct calculation. We conjecture that this addi-
tivity is valid in general. This would mean that among
the configurations with sharp domain boundaries one
could minimize the total surface contribution to the free
energy by looking for structures with small interface
areas and small changes of the direction of the magneti-
zation between adjacent domains. In this sense most
probably the triangular structure is already the optimum
for a cube. Of course we expect that the surface contri-
bution to the free energy can be lowered even further by
introducing broadened domain walls. This substantially
more difficult problem is left to a further study.

2521

Nonetheless, the present analysis provides already a
rough picture of what the actual equilibrium
configuration presumably looks like.

IV. DOMAIN STRUCTURES AND PHASE DIAGRAMS
IN EXTERNAL FIELDS

A sufficiently large external field will destroy any
domain structure since it favors the orientation of all di-
poles parallel to the field. Small fields, however, cause
only small perturbations of the zero field structure. Thus
there is a phase transition between an inhomogeneously
and a homogeneously magnetized phase at a critical
value of the external field [12,13]. Here we study the case
where in the zero field configuration the magnetization is
confined to the xy plane. The external field H=He, in-
duces an additional z component of the magnetization,
which is spatially constant due to the symmetry, and also
changes the values of the spatially inhomogeneous x and
y components. As a specific example one may think of
the triangular configuration in a cube (see Fig. 10), but
the following discussion holds for all zero field domain
structures with M, =0 and H; =0 in any sample shape.

If for finite but not too large external fields H and M
are not collinear one can surmise that the orientational
distribution is no longer axially symmetric. But devia-
tions from the axial symmetry can occur only in the
terms with / =2 in Eq. (3.1) because the / =0 term is fixed
by the normalization and the / =1 terms are fully deter-
mined by the magnetization M(r) [see Eq. (3.15)]. Thus
we expect that this possible anisotropy is only a small
effect and therefore it is ignored in the following analysis,
which reduces the number of parameters for the minimi-
zation of the free energy. (Indeed a numerical minimiza-
tion taking into account all i, up to / =2 indicates that
even in this approximation the equilibrium orientational
distribution remains axially symmetric.) So we focus our
analysis on configurations a(r,®) that emerge from a sin-
gle axially symmetric configuration
L > a;P)(cosb)

1=0

a@(cosf)= 4.1)

2T =

by applying local rotations. The coefficients a; are spa-
tially constant. As shown in Sec. III the entropic term is
given as

s=2r [ dx a(x)n[4ra(x)] 4.2)
and the bulk contribution of the short-ranged part of the
interaction contribution is given as [see Egs. (3.10) and
(3.11)]

(SR) w

int ) A 2
=p~ X uaj,
1=0

lim 4.3)

V— o V

so that both are independent of the spatial variation of
the orientation of M(r). However, the field energy can-
not be expressed solely in terms of the coefficients {a,}.
With [M|=2pma;,, Eq. (3.15), and due to the fact that
M, is constant, one has
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—I—/H—— — —gl pmHpy=—2pmHa,cos0), , 44 1= _Eﬁpa1 +Tﬁpm 2(1—3D33c08%6,,) |C

yvhere 6, denotes the aflgle between M(r) and H, which x fl dx x exp | 3, Py(x) | +BmH cosfy, . (4.10)
in the present case is constant. Consequently the -1 =1

configuration is completely described by the coefficients
{a;} and 6,,. The grand canonical potential must be
minimized with respect to them.

Despite V-M=0 the demagnetization field for such
configurations is no longer zero since the z component of
the magnetization leads to a magnetic surface charge
density on the upper and lower surfaces of the sample.
The first line of Eq. (3.20) shows that for the
configurations under consideration H, is the same as for
a configuration with M=(0,0,M,). Since M, is a con-
stant throughout the sample, Eq. (3.26) applies, which
leads to

1/(87r)fR3d3r H3(r)=27VDy,M?2 .

Thus with Eq. (3.25) one finds
Q(LR)

int

lim

V— o

=27D 3 M2 — —zé’lMl

(4.5)

(Since in general one has 3;D; =1 [19] a symmetry argu-
ment gives D3; =1 for a cube.) To summarize, the bulk
contribution to the density functional for the
configurations under consideration reduces to

9 v _
l}gnw—f—st(p)+2w% f_ldx a(x)In[4mra(x)]

+p2 S 20l — i—gpzm 262(1—3D 35c0820,)
1=0

—2pmHa,cos6y —pup . (4.6)

In order to determine the equilibrium configuration this
expression is minimized with respect to cosf,, and a(x)
which yields

8T7TD33pmazlcos0M—-H =0 4.7)
and
1 f(x)
ax)=——F17—"—— (4.8)
2 [ _dx f(x)
with

©

f(x)=exp |—Bp 3 (21 + 1)t;a;P;(x)+BmH (cosb,, )x
=1

+ 8T”,Bpm 20,(1—3D;3c08%0, )x (4.9)

The ansatz @&(x)=(C/2m)exp[3 =17 ;P;(x)] leads to a
system of equations consisting of Eq. (2.13) (where [see
Eq. 3.11)] u;=1%, for I >=2) and

By solving these equations numerically one finds that for
small fields, high densities, or at low temperatures the
fluid is in the domain phase, i.e., cosf,, <1, while for
large fields, low densities, or at high temperatures the
fluid is homogeneously magnetized with cosf@y,=1. In
the latter case the stationarity condition Eq. (4.7) is not
necessarily satisfied because the global minimum at
cosf,,=1 lies on the boundary of the allowed region for
the variational parameter cosd,,.

As already pointed out in Sec. III the spatial distribu-
tion of the domains is not determined by the bulk contri-
bution to the free energy but by the surface and line con-
tributions. However, it is very probable that the actual
configuration for H70 is a gentle distortion of the op-
timal configuration in zero field. Within our approach
for a cubic sample this is given by Fig. 10 with the mag-
netization tilted out of plane within each domain towards
the field direction, which is orthogonal to the plane.

Figure 11 displays the behavior of the magnetization at
fixed density and temperature for a cube, i.e., D3; =1. At
low fields the parallel component M =M,
=2pma,cosf), increases linearly with the field [see Eq.
(4.7)] while the perpendicular component M,
=2pma;,sind,, decreases and vanishes at the critical field
H,.. At higher fields M, saturates. The temperature
dependence at fixed field and density is shown in Fig. 12.

08
m*=15, T*=2.2, p*=0.7

06

5 04
0.2 MII
e M.L
- M

0

0o 05 t 15 2 25 3 35 4 45 5
H*

FIG. 11. Magnetization components parallel (M, solid line)
and perpendicular (M, dotted line) to the external field as a
function of the strength of this field in a cubic sample. At low
fields the parallel component increases strictly linearly [Eq.
(4.7)] whereas the perpendicular component decreases and van-
ishes ~(H,—H)'/? at a critical field H.. Above this field the
sample is homogeneously magnetized. Equation (4.7) holds for
O<H <H_ whereas it is no longer valid for H > H_, where
0y =0 independent of H. M =(M}+M?})'?=M, for H>H..
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m*=1.5, H*=0.5, p*=0.7

0.4

5

— M,
0.2 M,

0
2 2.2 24 2.6 2.8 3

T

FIG. 12. Dependence of the magnetization components on
the temperature at constant external field. At the transition
temperature 7, between the domain phase (T'<T,) and the
homogeneous phase (T'> T, ) the component M parallel to the
field exhibits a kink. In accordance with Eq. (4.7) M is con-
stant for 6,70, i.e.,for T<T,. For T>T, M =M.

The parallel component is constant in the domain phase
[see Eq. (4.7)] and exhibits a kink at the critical point.
For solid dipolar ferromagnets this kink has been predict-
ed by Wojtowicz and Rayl [13] and experimentally ob-
served by Frowein and Kotzler [20]. The above results
are in accordance with the discussion of a dipolar fer-
romagnet in a torus in Ref. [13]. We emphasize the fact
that due to the domain formation, which is a conse-
quence of the long-ranged nature of the dipolar forces, a
second order phase transition occurs also in the presence
of an external field. As long as the phase transition is
continuous the surface of critical points p (T, H) is given
by [see Eq. (4.7)]

8
Tﬂpcmalvc(pc,T,H)ZH , 4.11)

where
al,c(pc’T’H)=[—YI(T’H)+BmH]/(3cha1)

is defined by the solution of Egs. (2.13) and (4.10) for
cosf,, =1 [compare Eq. (4.23) in Ref. [8]].

Phase diagrams are calculated along the same lines as
in Sec. IT and displayed in Fig. 13. They strongly resem-
ble the zero field phase diagram with a tricritical point
and a first order phase transition below this point. With
increasing field strength the line of second order transi-
tions and the tricritical point are shifted to higher densi-
ties and lower temperatures. The overall influence of the
field is much smaller than in the case of the needle-
shaped sample (compare the curves for H*=0.5 in Figs.
2 and 13). Thus we find that for nonzero external fields
the bulk free energy and the phase diagrams depend on
the sample shape via the demagnetization factor Dj; in
Egs. (4.5), (4.6), and (4.10). However, Eq. (4.7) implies
that for H—0 one has cos8,,—0 (or a;—0) so that the
dependence on D;; drops out, rendering a shape-
independent free energy in agreement with Griffiths’s
theorem. If one increases the aspect ratio k, i.e., de-
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— H'=0
--- H*=0.5
2 —= H*=1.0
—— H*=2.0
. 19 homogeneously magnetized liquid with
H ~$=~.. liquid domain
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0 0.2 0.4 0.6 0.8
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FIG. 13. Phase diagrams for a cubic sample for different con-
stant values of the external field H. In contrast to the case of a
long needle (see Fig. 3) the tricritical point (open circles) and the

 line of second order transitions (dotted liens) remain at finite

fields. As a function of H the value of T, (full circles) increases
whereas the value of the tricritical temperature decreases. The
magnetic field shifts the phase transition between the homo-
geneously magnetized fluid and the fluid with domain structure
towards higher densities. Below the tricritical point this transi-
tion is first order. For H =0 the phase diagram is the same as
in Fig. 2 for H =0.

creases D3, for fixed H the line of continuous phase tran-
sitions in Fig. 13 shifts to ever higher densities. Simul-
taneously a second critical point evolves at medium den-
sities (see Fig. 14 where D;;=0.01075) so that in the
limit £ — o0 one arrives at the phase diagrams shown in
Fig. 2.

m*=1.5, H*=0.05, k=16
1.95

T

1.85

1.8

1.75

1.7

0.1 02 03 04 05 0.6 0.7 0.8
p

FIG. 14. Phase diagram for m*=1.5, H*=0.05, and a sam-
ple shape which has the same demagnetization factor as an el-
lipsoid with aspect ratio k =16 (i.e., D33 =0.10175). Compared
with the case kK =1 (see Fig. 13) the line of critical points is
shifted to higher densities, the tricritical temperature is de-
creased, and a second critical point has emerged at medium
densities, so that there are two triple points at 7*=1.811 and
1.867, respectively, at each of which three fluid phases coexist.
At even higher aspect ratios the tricritical point turns into a
critical end point and the line of critical points moves to even
higher densities. In the limit kX — o one recovers the phase dia-
gram shown in Fig. 2.
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V. STRIPES AND BUBBLES

Recently domain formation in a wide variety of physi-
cal systems has attracted considerable interest [14]. As
examples we mention Langmuir films (i.e., monolayers of
surfactants at fluid surfaces) of dipolar molecules [21] and
thin films of uniaxial ferromagnets [22]. In these and
many other systems a striped domain phase and a phase
of “bubble” domains forming a periodic hexagonal super-
structure can be observed. Figure 2 in Ref. [14] shows
these structures in a phase-separated binary system con-
sisting of a ferrofluid and a nonmagnetic fluid confined
between parallel plates with a strong magnetic field per-
pendicular to the plates. In the ferrofluid all particles are
aligned parallel to the field and the domain structure is
only produced by the presence of the second fluid. These
systems differ from the one-phase ferrofluid in weak or
zero field which is discussed here in so far as they can be
described by one-component order parameters. Never-
theless, in this section we will analyze the possibility of
stripe and bubble phases in dipolar fluids in the frame-
work of our approach. The only reported domain struc-
ture for these fluids found in simulations (see Fig. 12 in
Ref. [2]) approximately corresponds to the stripe phase,
but in this case the periodicity is induced by the periodic
boundary conditions. Note that these configurations do
not belong to the class described in Sec. III because the
magnetization is not everywhere tangential to the sur-
face. Nevertheless, as will be shown below, the demag-
netization energy can be made negligibly small if the
domain size is small compared to the system size.
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where the y direction is perpendicular to the plane of the
stripes. g takes on the values 0,%gq,,*2q,, ... where
qo=m/D is the fundamental wave number corresponding
to the width D of the stripes. Since « is real and normal-
ized the coefficients a,, fulfill the relations

1

Qgim =(—1)"a iqﬁ’ aqoo=‘/—z7;8q,0. (5.2)

Note that in contrast to Secs. III and IV here the domain
walls are not sharp but smooth. The local magnetization
is given by Eq. (3.15) with

Bim (D)= e%ay, . (5.3)

q

From macroscopic considerations [see the discussion
after Eq. (5.30)] one expects that for large system sizes
the number of domains increases as L* with O0<v<1.
Therefore the domain width increases as L1 ™" so that g,
varies ~L*"!. According to Ref. [22] a single mode
dominates near the transition to the homogeneous phase.
For this reason we confine our analysis to the case that in
Eq. (5.1) ¢ takes on only the values —gq,, 0, and g, (with
go>0). When Eq. (5.1) is inserted into Eq. (2.3) a lengthy
calculation yields the following expression for the in-
teraction contribution for a cubic sample:

A. Stripes Qi =050+, (5.4)
For the stripe phase we make the ansatz
alr,w)=3, Yay,e?Y, (o), (5.1)
g Lm with
]
QSR N singyL
—‘;‘,—=7Tp2 ;(21+1)u,§ |aoim |*+2lag pm 1>+ 2Re(dg 1@ * g im)
sin(qqoL /2) 1
—m—_ Re(aqolmaglm) _Eq(z)zlvlzlaqolmlz
m
1
+Eq(2)2w1112 2 g’l’z"’l’”zzRe(a'qoll"‘laqo’z’“)] "
1,1, my,my
and
Q" 1672 3 (go)?
Zhint 107" 5 2|3 2_ 2 2y_
v g PmM 1 2oL 10 [ag,iol*—3(lag nl ‘Haqolﬂ )—=3Relag 1y, 7)] - (5.6)
—
Terms of the order of L ™%¥, L3¥~ 1 and L ~! have been 1 5 1'% re 47(SR)
neglected. The various coefficients are given by Eq. w,llz——?B—C(IIIZZ,OOO) 4 fa drr ,1,22(r) ’
(3.11), (5.8)
and
_ CUh2,mymam) [(2—m)(2+m)]'7?
_ 1 €(110,000) E1ytymym, C(1,1,2,000) Q2—mMn2+mMn ’

=g v, A 5.7

(5.9)
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2(

where fi58(r)=F} 1 /() for (1,1,1)#(112) and
PS8 =Fin(n=4m)V2/158m?/r3

[see Eq. (3.12)]. The entropic term [Eq. (2.2)] is more
difficult to determine because the orientational distribu-
tion a(r,®) does not enter bilinearly as in the interaction
contribution but as the argument of the logarithm. If the
logarithm is expanded around the isotropic configuration
a(r,w)=1/(47) one finds

sin[(g,; —q,)L /2]

2525
o (41T)n~1(_1)n
S: - . 7
n§2 nin—1)
Xfl/z dy fda) 3 ame Y, (o)
-1/2 aim
=3 s, (5.10)
n=2

The prime at the summation sign indicates that the term
I =0 is to be omitted. Using the orthogonality of the
spherical harmonics the term with n =2 can be expressed
as

S(2)=27T ' a a
q%hkzm (g1 —gy)L/2  ~himTaln
, sing,L singoL /2
=27712 |@omm [*+2lag m |+ 7 2Re(aq0,maiq0,m)+m Re(a g g im) (5.11)

The expressions for S">3 can be obtained from Eq.
(5.10) by expanding the multinomial expression and in-
tegrating term by term, but for increasing n these expres-
sions become very lengthy. In the spirit of the previous
sections we reduce the number of parameters by taking
into account only the terms with / =1. The average mag-
netization is given by

(M)=V—1de3r M(r)

=V4n /3pm(—V2Reay;,, V2 Imagy;,,a01)
+O(L™)

so that in the thermodynamic limit (M) is determined
by the coefficients a;,,. From now on we study the case
of zero external field which turned out to be especially in-

teresting. (For the case H70 see the comment at the end
of Sec. VB.) Then one would expect (and indeed it can
be shown by numerical minimization) that the minimum
of the bulk free energy is attained for (M ) =0 which im-
plies a;;,, =0. Thus due to Eq. (5.2) besides g there are
six free parameters left. We parametrize the coefficients
a41m as follows:

i8 —i
p— 0 — 0
aqolo——Aoe . a_qom—AOe ,
is —i8
— + —__ -
an=Aie 7, a_gn=—4Ad_e , (5.12)
i8 —is
= - = — +
a1 A_e ~, a—qoll Ae s

with 4,, A, 20 and 8,8 real so that the magnetization
is given as [see Egs. (3.15) and (5.3)]

—V2[— A _cos(qoy +8_)+ A cos(gey +8,)]

M(y)=4Tﬂpm
2 Aycos(gyy +8)

The bulk part of the interaction contribution then takes
on the form

Q

int

4

=gt 6mptn (A3 + A2 + AY)

2

—1“697T—p2m2[A(2)—%(A2_ +4%)
—3A4, A _cos(6,—6_)]

(5.14)

V2[ A _sin(goy +8_)+ A ,sin(goy +6,)]

(5.13)
[
and up to the order n =4 the entropic term is
S=4m( A3+ AL +4%)
2
+—2-45L[2A4_ +24% +84% 4% +44% 43
+4A4% A2
+3A43—4A4_ A, Afcos(8_+8,—28y)] .
(5.15)
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In order to enable an analytical treatment we consider
the limit of small anisotropy, i.e., p—py, where p,. is
the density of the second order phase transition to the
isotropic phase. Then the quadratic terms of
(Qn/V)p +(p/B)S dominate. Minimizing them under
the constraint of fixed C=A}+ A% +A4% gives
§,—8 _=m and A_=A, for any C. Therefore these
conditions, which mean that the magnetization is
transversal, must also be fulfilled at the unconstrained
minimum. Incorporation of the fourth order terms then
leads to 8, —8,=+tm/2 and A3=2A4%. From Eq. (5.13)
one finds that the magnetization vector describes a helical
curve given by

1/2 tsin(goy +8p)
%’T (5.16)

M(y)= pmA, 0

cos(goy +8)

Thus the most stable configuration has a spatially con-
stant absolute value of M. This has been explicitly shown
here, while it entered as an assumption in Sec. III. The
phase §, cannot be determined from the bulk terms, even
if higher orders in S are included, since they are indepen-
dent of §; if the conditions found above are fulfilled. The
value of A, which depends on the thermodynamic pa-
rameters p andT, follows from the minimization of

A0 _ D | p o
4 Ve B
~ 8 1927
=127Tp2u1—-27m2A(2)+% 8w+ A
(5.17)

This is equivalent to the minimization problem for the
homogeneously magnetized long needle [D (k = 0 )=0]
in the same approximation [see Eq. (7.12) in Ref. [8] with
a;>,=0] if V12w 4, is replaced by a,, which corre-
sponds to the same absolute value of the magnetization
(IM[=2V'47/3pm Ay=2pma,). In particular the phase
transition takes piace at the same critical density

2/3 _ 2/3

(5.18)

Numerical minimization shows that the above form of
M(r) remains valid also at higher densities, i.e., for larger
anisotropies.

By truncating the sum over g and / the above analysis
has shown that the most favorable stripe configuration
consists of a transversal helical structure whose ampli-
tude is that for the equilibrium configuration in a long
needle. In order to test the relevance of the truncation of
the sum over / we consider a general, spatially constant,
distribution

a(0)= = S a,P,(cos)= Sl ¥iolw) (5.19)
2T 4 i
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with ujo=[m(2] +1)] "?a, which is symmetric around
the z axis. In the next step, from this distribution &(w)
we generate a spatially varying distribution a(r,») by ap-
plying local rotations along the y axis to @(w) such that
the resulting coefficients p,, (y) lead to a magnetization

cosqyy
M(y)=%pma,| O
singoy

(5.20)

This means that we anticipate the helical structure found
in Eq. (5.16). The expansion coefficients of this distribu-
tion a(y,w) are given by

21) (5.21)

D =D o (V)i -

For a detailed discussion of the rotation matrices D}, see
Ref. [18]. In the present case the rotation corresponds to
a rotation around the y axis by the angle q,y. According
to Eq. (A106) in Ref. [18] this implies for Eq. (5.21) that
one has

172
4 ,

/L]m (y): 21 +1 Yltn(qoy,o)‘uzlo . (522)
From this expression the Fourier coefficients a,, defined
in Eq. (5.3) can be inferred. For / =1 one finds

_ Mo _ T ;
aqolo_—i_, aqoll—aqoﬁ—_ 2’\/2 (5-23)

For !/ =22 multiplies of g, up to Ig, contribute to p,, ().
According to Egs. (5.6) and (5.23) the bulk part of the
long-ranged interaction contribution is

O 8 87
’}Lw th Z—%p mz,u'l%)‘—“p mia?  (5.24)

as for a needle-shaped sample [8]. For the general ansatz
in Eq. (5.1) it can be shown that the bulk part of the
short-ranged interaction contribution is

(SR)
int

lim (5.25)

. :szz 2(21+1)ﬁ1|aqlm|2

q Lm

In the present case this expression can be simplified by
using the fact that the sum of the absolute squares of all
coefficients u,, with fixed / is invariant under rotations
[see the discussion following Eq. (3.2)] so that

1
2 2
EL”‘Im = |iol 77_(2[_,_1)0‘1
_ ilg,—q,)y
2 2 : 2 qllmat;;lm
m q.,9,
=3 Slay,!* (5.26)
m q

The last equation holds because the terms with g;7g¢, in
the sum over g, and g, would lead to a y dependence
which must vanish because |ujo|? is a constant. There-
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fore one obtains
QGN

int

——=p*3 a7, (5.27)
1

4

again in agreement with the result for a homogeneously
magnetized needle. As already noted in Sec. III the en-
tropic term does not change if the orientational distribu-
tion is locally rotated. Thus we conclude that the stripe
configuration in a cube obtained by the local rotations of
the orientational distribution described by Eq. (5.20) has
exactly the same bulk free energy as the spatially homo-
geneous configuration in a needle-shaped sample.

Since this result holds for any spatially constant
configuration @(w) it is valid in particular for the
configuration which minimizes the free energy of a
needle-shaped sample. Thus we have proven that this
stripe configuration renders the same bulk free energy as
the configurations with M-n=0 discussed in Sec. III for
any value of gy. Consequently the optimum value of g
(and thus v) and the answer to the question whether this
stripe configuration can compete with the domain
configurations studied in Sec. III must be determined by
those contributions to the free energy which are subdom-
inant to the leading bulk term. If again one restricts one-
self to the terms with / =1 and uses the helical solution
Eq. (5.16) one derives from Egs. (5.5), (5.6), and (5.10)

Q—Q
— =T 2 43(C (qoL) "+ Ca]

+0O(L ™%, L3 1~ (5.28)

with
— 2 —_1 1 2w 5 o
Ci=4mm?*, C,=—1lv,+iw,+ smoe. (5.29)

The entropic term gives no subdominant contributions;
the terms with sin(gyL) and sin(gyL /2) in Eq. (5.5) van-
ish for the helical solution. Concerning possible finite
size corrections to the coefficients a,, an argument
analogous to the one given after Eq. (3.33) applies.
Minimization of Eq. (5.28) with respect to g, gives the
equilibrium wave number

C1 1/3
2C,L

4o~ (5.30)

Therefore go~L ~!/? so that v=2 in accordance with
our assumption 0 <v < 1. (The phase §, does not appear
in the next-order terms; its equilibrium value could only
be determined if even higher-order terms were calculat-
ed.) From Egs. (5.7), (5.8), and (5.29) one finds for small
dipole moments

27

=T 2 |g2—9 % “Bwiy(n_ 6
C, 5" [a Zf(r drr(e 1) |+0(m°).

(5.31)

The lowest-order term becomes negative if T* <1.47
which would mean that the minimum of Eq. (5.28) is at
qo= . We suspect that at such low temperatures this is
a defect of our theory and do not pursue it further.
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The power law found above also follows from the fol-
lowing simple argument. The magnetic energy of a cube
of volume L3 divided into stripe domains of width D is
[23] E,, ~L*DM?, while the energy of the domain walls
is proportional to the product of the number of domains,
the area of one wall, and the inverse domain thickness so
that E,~L*D 2. The last factor ~D ~! arises due to
the continuous rotation of the magnetization direction
across the whole domain (in contrast to Ising models or
solid ferromagnets with easy axes of magnetization which
cause microscopically thin domain walls). The power law
D ~L'3 can now be inferred by minimizing the sum of
these competing energies. The comparison with Eq.
(5.28) indicates that the terms with C; and C, correspond
to the magnetic energy and the wall energy, respectively.
From Eq. (5.30) the value of the grand canonical poten-
tial is
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FIG. 15. Structure of the bubble phase. (a) Density plot of
the z component of the magnetization, parallel to the tubular
bubbles. In the black and dark gray regions M, is positive and
increases towards the axes of the bubbles, whereas in the white
and light gray regions M, is negative. (b) Field plot of the x and
y components of the magnetization of the same configuration.
The arrows indicate the x and y components of the magnetiza-
tion of the same configuration. The arrows indicate the x and y
components of M(x,,y,) where (x4,y,) corresponds to the
center of each arrow. The configuration is translationally in-
variant in the z direction.
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Q=Q,+47p*43(2C3C,)*L"3+0(L?) . (5.32)

Since for large systems the positive contribution ~L7/3
dominates the terms proportional to the surface, i.e.,
~L?, which occur for the domain configurations dis-
cussed in Sec. III, we conclude that in the thermodynam-
ic limit the stripe phase is less favorable than the domains
considered in Sec. III.

B. Bubbles

The bubble phase consists of a hexagonal array of tu-
bular domains with a fixed direction of the magnetization
(see Fig. 15). In the center of each domain the magneti-
zation points in the same direction, which is parallel to
the tubes. In the intervening region the magnetization is
predominantly oriented in the opposite direction. This
structure is described by the orientational distribution

1 iq-
a(r,a))=j4—7;+aooYm(w)+ Sagme' VY, (o) .

q,m

(5.33)

Here q takes on the six values +q,, q,, £q; with the re-
ciprocal lattice vectors q; given by

1 —1
1 _
q,=¢ |0 |, ‘hzz% V3|,
0
(5.34)
) -1
‘l3="2“10 V3,
0

so that a(r,w) is independent of z. The lattice constant is
41 /(V'3q,). In order to simplify the following calcula-
tions we have not taken into account terms ~ Y, (w)
with / = 2. Since a must be real and invariant under rota-
tions around the z axis by 7 /3 one has
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(5.36)

Due to these conditions the coefficients ag, can be
parametrized by four real parameters aqy, By, B, and
6 such that aq0=Bg and a4, =B+el *. Again we as-
sume that go~L">"! for large L. A lengthy calculation
yields as the bulk contributions to the density functional

7m=%p2u0— 169” p’m* (B3 —B? +3B% cos25 )
+2mp*i, (a3, +6BE+12B% ), (5.37)
172
Qy 41
== |5 | pmHac (5.38)
and
© (12m)" 2n [n—j/2] ( . I
S= bv_n)BZlBj 2n —2i—j .
n§1(2n—1)2n(2n+1)j§0 & Oy Z+Pot

(5.39)

We have determined the coefficients bfj”) in the entropic
term up to n =6; here we give only the first two terms:

S =2m(ad,+6B3+12B%)

2
+12—57T—(216B4+ +120B% B3 +90B$+48B% Byay,

+48Bjag,+24B% a, +36B3ad, +ad,) .

(5.40)

[Due to the complications induced by the dependence of
a(r,w) on two spatial coordinates we have not yet deter-
mined the next-order contributions to the density func-
tional.] Since only Q; , depends on &, minimization im-

Ggm=(—1)"a* _ (5.35) mediately gives 8, =0 or 7. The magnetization, given by
4 an obvious generalization of Egs. (5.3) and (3.15), then
and takes on the form
|
12 +B . [V/3sin(q,r)—V3sin(qs-1)]
M(r)= -8;1 pm +B [2sin(q, T)—sin(q, r)—sin(q;-r)]

The constants B, and B, are determined by numerical
minimization. Figure 15(a) indicates the variation of the
z component of the resulting magnetization configuration
while Fig. 15(b) displays the corresponding x and y com-
ponents. The magnetization is always perpendicular to a
path connecting the centers of two neighboring bubbles.
The helical variation of the magnetization along such a
path is completely analogous to the one found for the
stripe phase. For zero external field the critical density
for the phase transition from the isotropic phase to the

V2B, [cos(q, 1) +cos(q, 1) +cos(qyr) ]+ (1/V2)ay,

f

domain phase turns out to be the same for the stripe and
bubble configurations. But the numerical evaluation of
the density functional as well as an expansion for small
deviations from the transition point indicate that the
stripe phase is already more stable if only the bulk terms
are considered. For finite external fields, however, the
bubble phase is preferred near the phase transition and
only at higher densities does a first order transition to the
stripe phase take place. These results are in full accor-
dance with the findings in Refs. [22] and [21]. But a com-
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parison with the domain phase discussed in Sec. IV for
HF0 (using the same approximation, i.e., keeping only
terms with / =1) shows that the bubble phase has the
higher bulk free energy.

In summary, we can state that both the stripe and bub-
ble phases have to be discarded as compared with the
domain structures discussed in Secs. III and IV. Thus
the structures found for dipolar Ising systems are not
stable in the present system, in which the magnetization
may point in any direction.

VI. SUMMARY

The following main results have been obtained.

(1) The magnetization curves in the case of a vanishing
demagnetization factor (i.e., for needle-shaped samples or
in the presence of infinitely permeable surroundings), for
which the magnetization is homogeneous, are shown in
Fig. 1.

(2) The phase diagrams of needle-shaped samples in
external fields (Fig. 2) exhibit two critical points, the one
at higher densities stemming from the tricritical point in
zero field. The second order phase transition in zero field
between the isotropic and the ferromagnetic liquid is
washed out by the external field but remains discernible
(Fig. 3).

(3) A detailed discussion of the comparison between
our analytic results and published simulation data is
presented at the end of Sec. II.

(4) If in a sample with arbitrary shape an inhomogene-
ous orientational distribution of the magnetization M is
constructed from a homogeneous one by local rotations
in such a way that V-M=0 everywhere and n-M =0 on
the surface, the resulting configuration has the same bulk
free energy as the corresponding homogeneous
configuration in a long needle. In this case the demagnet-
ization field [Eq. (3.19)] is zero. This result indicates that
the bulk free energy is shape independent for H =0.

(5) The surface contributions to the free energy for the
layered structure displayed in Fig. 8 have been calculated
and it is has been shown that they are equal to the sum of
the individual surface tensions at the different interfaces.
From these results we conclude that the most stable
configuration in a cube under the constraint of sharp
domain boundaries is the triangular structure shown in
Fig. 10.
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(6) If an external field is applied perpendicular to the
plane of the spontaneous zero field magnetization a rota-
tion of M into the field direction is induced. This leads to
a phase transition from an inhomogeneously magnetized
phase at low fields to a homogeneously magnetized phase
at high fields. In the domain phase the magnetization
component parallel to the field increases linearly with H
and is independent of T [see Eq. (4.7) and Figs. 11 and
12].

(7) Figure 13 displays the phase diagrams in the pres-
ence of an external field. For finite demagnetization fac-
tors there is a tricritical point and a line of second order
phase transitions also for H >0. In this case the phase
diagram does depend on the shape of the sample.

(8) The most stable stripe configuration exhibits a heli-
cal variation of the magnetization direction [Eq. (5.16)].
This configuration has the same bulk free energy as those
with n-M =0 at the surfaces. The width of the stripes
scales as L!/3 as a function of the system size L, which
leads to contributions to the free energy proportional to
L773. Therefore, in contrast to dipolar Ising systems, the
stripe configuration is unstable in the thermodynamic
limit.

(9) The bubble structure depicted in Fig. 15 is less
stable than the stripes at H =0 and less stable than the
domain structures discussed in point (6) for H+0.

As a continuation of this work we are studying a free
numerical minimization of the density functional.
Modern minimization methods, such as simulated an-
nealing or conjugated gradients, allow a large number
(10*-10°) of free parameters to be included. With this
approach we especially want to study the structure of the
domain boundaries and the behavior of the magnetization
near the line singularities, which we expect to occur at
the center of square or circular cylinders. The present
analytic results will serve as important guidelines for
these more detailed studies.
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FIG. 15. Structure of the bubble phase. (a) Density plot of
the z component of the magnetization, parallel to the tubular
bubbles. In the black and dark gray regions M, is positive and
increases towards the axes of the bubbles, whereas in the white
and light gray regions M, is negative. (b) Field plot of the x and
»y components of the magnetization of the same configuration.
The arrows indicate the x and y components of the magnetiza-
tion of the same configuration. The arrows indicate the x and y
components of M(xy,y,) where (x4,y,) corresponds to the
center of each arrow. The configuration is translationally in-
variant in the z direction.



